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Introduction

Debugging? Klingons do not debug. Our software does not coddle the weak.

For the rest of us, finding and removing defects in code is a 
fundamental programming skill. Besides preventing code from 
performing its intended function, bugs destroy users’ confidence in the 
reliability of code even when no errors are obvious. 

A through discussion of debugging techniques could easily fill a 
semester course in computer science. We have an hour here today.   

I will take that time to discuss broad principles rather than fine points of 
debugging.



  

Ancient History

Python? That is for children. A Klingon Warrior uses only machine code, keyed in on the front panel 
switches in raw binary.

When I first began programming, in 1976, on a PDP 11/40, there 
was no such thing as a symbolic debugger. “Debug by printf” was 
not the last resort; it was the only resort, short of repeated code 
inspection.

Fortunately, this machine had 128K of core memory, no mechanism 
for page swapping, and a disk the size of a washing machine that 
held 2 Mbyte of storage.

There simply wasn’t room to cram very many bugs onto this 
machine.

(But, man, did it have a beautifully orthogonal instruction set!)



  

How to Deliver Bug-Free Code

Perhaps it IS a good day to die! I say we ship it!

● Don’t write buggy code.
● Scaffold code during development.
● Test comprehensively.
● Be proficient in using a good symbolic 

debugger and heap inspector.
● Close the loop.



  

Don’t write buggy code

Specifications are for the weak and timid!

● Know what you want your code to do before you write it.

● Compartmentalize, compartmentalize, compartmentalize
– Globals are evil
– Keep functions short and simple
– Program with objects
– Use enumerations and constants rather than magic numbers

● Don’t reinvent the wheel
– Use standard libraries (STL)
– Use reliable third-party libraries

● How do you know it’s reliable?

● Avoid inherently buggy programming techniques
– Case instead of long succession of ifs
– Polymorphism instead of case
– Avoid raw pointers and arrays



  

Scaffold code during development

● Use modern configuration tools like cmake to switch between debug 
and production builds.

● Debug builds should be liberally sprinkled with checks that can 
disappear in production builds.
– NDEBUG

● Design by Contract:
– Preconditions
– Postconditions
– Invariants
– Miscellaneous checks

● Production code debugging options
– “Pay to play”



  

Design by Contract

template <class RandomContainer>

void rotate(RandomContainer &r, RandomContainer &qt, const unsigned n,

            unsigned i, double a, double b) 

{

  Require(r.size() == n * n);

  Require(qt.size() == n * n);

  Require(i + 1 < n);

  // … the good stuff ...

  Ensure(r.size() == n * n);

  Ensure(qt.size() == n * n);

}



  

Test comprehensively

You question the worthiness of my code? I should kill you where you stand!

● Use automated unit testing
– Levelized code

● Use a code coverage tool
– There is almost no point of diminishing return 

with code coverage. A code that is 95% covered 
is a code that is inadequately tested.

– Coverage by function is a good start. Coverage 
by branch must follow.



  

Actual debugging

● Use a good symbolic debugger.
– Should display objects sensibly.
– Should allow variables to be set by hand in the middle of 

a session.
– Should make it easy to pull up the suspect function.
– Should allow conditional breakpoints.

● Use a good memory checker.
– Should detect all out-of-bounds errors.
– All else is frosting.



  

Isolating bugs

● Think a little before jumping into the debugger.
● Strip input to bare minimum that reproduces the 

bug.
● Previous versus head build.
● Beware bug that is actually a feature.
● Restart



  

When all else fails...

● Fire up the debugger on the minimum failing input.
● Identify a “bug trace” – output or variable value 

that betrays the error.
● Close in by bisection.
● Once within a manageable range of code, begin 

stepping through code with the bug trace 
monitored.

● Peel the onion.



  

Close the loop

By filing this bug report, you have questioned the honor of my family. Prepare to die!

● “With many eyes, all bugs are shallow”
– Know your customers and talk to them.
– The burden is on you, not them, to isolate the bug.
– No one ever reads the manual.

● Consider open-sourcing your code
– In the LANL environment, there are obvious restrictions on 

open sourcing, but it can be done in appropriate cases.

● Every bug report should add at least one new test case 
to your test suite.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

